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Abstract— In this paper, we briefly review recent advances in
blind source separation (BSS) for nonlinear mixing models. After
a general introduction to the nonlinear BSS and ICA (indepen-
dent Component Analysis) problems, we discuss in more detail
uniqueness issues, presenting some new results. A fundamental
difficulty in the nonlinear BSS problem and even more so in the
nonlinear ICA problem is that they are nonunique without extra
constraints, which are often implemented by using a suitable
regularization. Post-nonlinear mixtures are an important special
case, where a nonlinearity is applied to linear mixtures. For such
mixtures, the ambiguities are essentially the same as for the linear
ICA or BSS problems. In the later part of this paper, various
separation techniques proposed for post-nonlinear mixtures and
general nonlinear mixtures are reviewed.

I. THE NONLINEAR ICA AND BSS PROBLEMS

Consider � samples of the observed data vector �, modeled
by

� � �� �

��
���

���� (1)

where � is the unknown mixing matrix with column vectors
�� , � � �� �� � � � � �, and � is an unknown �-dimensional
source vector containing the source signals ��� ��� � � � � ��,
which are assumed to be statistically independent. In general,
the dimensionality � of the vectors � and �� can be different
from �. Usually it is assumed that there are at least as many
mixtures as sources (� � �), the mixing matrix � has full
rank, and that at most one of the sources �� is Gaussian.

ICA is a method which consists in estimating a matrix �
such that � � �� are statistically independent, only from the
observed data �.

Such a model can be used in different situations, for
example:

� In multidimensional signal processing, where each sensor
receives an unknown superimposition of unknown source
signals at time instants � � �� � � � � � .

� In sparse coding, where one tries to code the � data
vectors as a (sparse) linear combination of independent
components.

In the first problem, the goal is to recover the � unknown
actual source signals ����� which have given rise to the
observed mixtures. This is referred to as the blind source
separation (BSS) problem; blind since no or very little prior
information about the sources is required. The second problem
is related to a hypothetical and rough model which tries to

approximate the data as well as possible using � suitably
chosen independent components [1].

In both cases, since the only assumption is the independence
of sources, ICA is used for solving the problems. It has been
proved that ICA and BSS are equivalent (with well-known
indeterminacies) with the above assumptions [2], and this basic
(linear) case is now understood quite well [3], [1], [4]. Since
���� (see [5] for a historical review and early references),
several well-performing BSS and ICA algorithms [6], [7], [8],
[9], [10], [11], [12] have been developed and applied to an
increasing number of applications [13], [14], [15], [16], [17],
[1], [18], [4]. Many more references on linear ICA and BSS
can be found in the recent books [1], [4].

If the source signals are not plain random variables but
have a temporal structure, linear blind source separation can
be achieved by utilizing either temporal correlations [19],
[20] or nonstationarity [21], [22] under somewhat different
assumptions; see [1], Chapter 18. Moreover, the basic model
(1) is often too simple for describing the observed data �

adequately.
A natural extension of the linear model (1) is to consider

nonlinear mixing models. For instantaneous mixtures, the
nonlinear mixing model has the general form

� � ���� (2)

where � and � denote the data and source vectors as before,
and � is an unknown real-valued �-component mixing func-
tion.

Assume now for simplicity that the number of independent
components � equals the number of mixtures �. The general
nonlinear ICA problem then consists of finding a mapping
� � �� � �� that yields components

� � ���� (3)

which are statistically independent. A fundamental charac-
teristic of the nonlinear ICA problem is that in the general
case, solutions always exist, and they are highly nonunique.
One reason for this is that if � and 	 are two independent
random variables, any of their functions 
��� and ��	� are
also independent. An even more serious problem is that in the
nonlinear case, � and 	 can be mixed and still be statistically
independent (see Section II).

Contrary to the linear case, the BSS problem for general
nonlinear mixtures differs greatly from the nonlinear ICA



problem defined above. In the respective nonlinear BSS prob-
lem, one should find the original source signals � that have
generated the observed data �. This is usually a clearly more
meaningful and unique problem than the nonlinear ICA prob-
lem defined above, provided that suitable prior information
is available on the sources and/or the mixing mapping. If
some arbitrary independent components are found for the
data generated by (2), they may be quite different from the
true source signals. Generally, solving the nonlinear BSS
problem is not easy, and requires additional prior information
or suitable regularizing constraints.

II. EXISTENCE AND UNIQUENESS OF NONLINEAR ICA
AND BSS

Several authors [23], [24], [5], [25], [26] have recently
addressed the important issues on the existence and uniqueness
of solutions for the nonlinear ICA and BSS problems. Their
main results, which are direct consequences of Darmois’s
results on factorial analysis [27], are reported in this section.

A. Indeterminacies

Recall first the definition of independent random vector.
Definition 1.1: A random vector � is statistically inde-

pendent if its joint probability density function (pdf) �����
satisfies ����� �

�
� ������, where ������ are the marginal

pdfs of the random variables ��.
The product of a permutation matrix � by any diagonal

mapping both preserves independence and insures separability.
Definition 1.2: A one-to-one mapping � is called trivial, if

it transforms any random vector � with independent compo-
nents into a random vector with independent components.

The set of trivial transformations will be denoted by �.
Trivial mappings preserve the independence property of any
random vector. One can easily show that a one-to-one mapping
� is trivial if and only if it satisfies

����� �� � � � � �� � ��������� � � �� �� � � � � � (4)

where the �� are arbitrary functions and � is any permutation
over ��� �� � � � � ��.

This result establishes a link between the independence
assumption and the objective of source separation. It becomes
soon clear that the objective of source separation is to make the
global transformation� = �Æ� trivial using the independence
assumption.

However, from (4) it is clear that sources can only be
separated up to a permutation and a nonlinear function. For
any invertible mapping ���� = 	
����� � � � � 
����


� whose
each component is a scalar nonlinear mapping 
 ���� = 
������
� � �� � � � � �, it is evident that if ����� =

�
� ������, then

�������� =
�

� �����������. Moreover, this is not possible
without imposing additional constraints on �, as we shall see
in the next subsection.

B. Results from factor analysis

In the general case when the mapping � has no particular
form, a well-known statistical result shows that preserving
independence is not a strong enough constraint for ensuring
tseparability in the sense of equation (4). This result has been
established already early in the 50’s by Darmois [27]. He
used a simple constructive method, similar to the well-known
Gram-Schmidt orthogonalization procedure in linear algebra,
for decomposing any random vector into a non-trivial mapping
of independent variables. In [23], Hyvärinen and Pajunen
have applied Darmois’s idea to construction of parameterized
families of nonlinear ICA solutions.

Darmois’s result is negative in the sense that it shows that
there exist non-trivial transformations � which ”mix” the
variables while still preserving their statistical independence.
Hence blind source separation is simply impossible for general
nonlinear transformations by resorting to statistical indepen-
dence only without constraints on the transformation model.

In the conclusion of [27], Darmois clearly states: ”These
properties [...] clarify the general problem of factor analysis
by showing the great indeterminacies it presents as soon as
one leaves the already very wide field of linear diagrams.”

C. A simple example

We give a simple example of mixing mappings pre-
serving independence, derived from [24]. Suppose � � �
�� is a Rayleigh distributed variable with pdf ������� =
������	������, and �� is independent of ��, having a uniform
pdf �� � 	�� ���. Consider the nonlinear mapping

		�� 	�
 � ����� ���

� 	�� ������� �� �������
 (5)

which has a non-diagonal Jacobian matrix

	 �

�
������ 	�� �������
������� �� ������

�
(6)

The joint pdf of 	� and 	� is

���	���	�� 	�� �
���	������ ���
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This shows that the random variables 	� and 	� are indepen-
dent, although they are still nonlinear mixtures of the sources.

Other examples can be found in the literature (see for
example [28]), or can be easily constructed.

D. Specific model

The basic reason for Darmois’s negative result is that no
constraints were assumed on the transformation �. Constrain-
ing the transformation � in a certain set of transformations �
can reduce these great indeterminacies.



1) Smooth mappings: Recently, multi-layer perceptron
(MLP) networks (see [29]) have been used in [30] for estimat-
ing the generic nonlinear mappings �. It is conjectured that
smooth mappings providing by MLP networks are sufficient
for ensuring that nonlinear ICA leads to nonlinear BSS, too.
However, the following example [31] shows that smoothness
alone is not sufficient for separation.

Without a loss of generality, consider two independent
random variables � � ���� ���

� which are both uniformly
distributed in the interval 		�� �
, and the nonlinear smooth
mapping


 �

�
�������� 	 ���������
��������� ��������

�
(7)

This is a rotation for which the rotation angle ���� depends
on the radius � � ���� � ����

�
� as follows:

���� �

�
����	 ��� � � � � � �

�� � � �
(8)

where � � �. This smooth mapping
 preserves independence
since the Jacobian of the transformation is equal to 1, but
it is still mixing since the Jacobian matrix is not diagonal.
This counterexample proves that restricting the mapping to be
smooth is not sufficient.

Since smoothness is too vague, one has to explore further
for defining sufficient conditions. Hyvärinen and Pajunen gave
a partial answer to this question in [23], proving that a
unique solution (up to a rotation) can be obtained in the
two-dimensional special case if the mixing mapping � is
constrained to be a conformal mapping.

2) Structural constraints: A natural way of regularizing the
solution consists in looking for separating mappings belonging
to a specific subspace �. To characterize the indeterminacies
for this specific model �, one must solve the tricky indepen-
dence preservation equation which can be written

� ����
� �������� � � � ���� �

�
���� �������� � � � ���� (9)

where �� is a �-algebra on �� .
Let � denote the set1

� � ����� � ��� � � � � � ����� / �� � � � �� ��� �

���� has independent components� (10)

of all source distributions ���� � ��� � � � � � ���� for which there
exists a non-trivial mapping � belonging to the model � and
preserving the independence of the components of the source
vector �.

Ideally, � should be empty and � � � should contain the
identity as a unique element. However, in general this is not
fulfilled. We then say that source separation is possible when
the distributions of the sources belong to the set ��, which is
the complement of �. The sources are then restored up to a
trivial transformation belonging to the set � ��.

1In equation (10), � denotes the difference between two sets
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Mixing System� � Separating System� �

Fig. 1. The mixing-separating system for PNL mixtures.

E. Example: Linear models

In the case of regular linear models, the transformation
� is linear and can be represented by (1), where � is a
square invertible matrix. In this case it suffices to constrain
the separating model � to lie in the subspace of invertible
square matrices, and one has to estimate a matrix � such that
� � �� � �� has independent components. The global
transform � is then restricted to the subspace � of invertible
square matrices.

The set of linear trivial transformations ��� is the set of
matrices equal to the product of a permutation and a diagonal
matrix. From the Darmois-Skitovich theorem [27], it is clear
that the set � contains the distributions ���� � ��� � � � � � ����
such that at least two sources, e.g. ��� and ��� , are Gaussian.
Thus we end up with Comon’s well-known theorem [2]: blind
source separation is possible whenever we have at most one
Gaussian source, and the sources can then be restored up to
a permutation and a diagonal matrix.

F. Separability of PNL mixtures

In the post-nonlinear (PNL) model, the nonlinear observa-
tions have the the following specific form (Figure 1):

����� � 
��
��
���

���������� � � �� � � � � � (11)

One can see that the PNL model consists of a linear mixture
followed by a componentwise nonlinearity 
 � acting on each
output independently from the others. The nonlinear functions
(distortions) 
� are assumed to be invertible.

Besides its theoretical interest, this model belonging to
the L-ZMNL2 family suits perfectly for a lot of real-world
applications. For instance, such models appear in sensors array
processing [32], satellite and microwave communications [33],
and in many biological systems [34].

As discussed before, the most important thing when dealing
with nonlinear mixtures is the separability issue. First, the
separation structure � must be constrained so that:

1) It can invert the mixing system in the sense of Eq. (4).
2) It should be as simple as possible for reducing the

residual distortions ��, which result from using the
independence assumption only.

Under these two constraints, we have no other choice that
selecting for the separating system � the mirror structure of
the mixing system � , see Figure 1. The global transform � is

2L stands for Linear and ZMNL stands for Zero-Memory NonLinearity.



then restricted to the subspace� of transforms, which consists
of a cascade of an invertible linear mixture (regular matrix �)
followed by componentwise invertible distortions and again
an invertible linear mixture (regular matrix �). In [24], it has
been shown that these mixtures are separable for distributions
having at most two Gaussian sources (the set � contains the
distributions having at least two Gaussian components), with
the same indeterminacies as linear mixtures (the set of linear
trivial transformations � � � is the set of matrices equal to
the product of a permutation and a diagonal matrix) if � has
at least � nonzero entries on each row and column.

Separability of PNL mixtures can be generalized to con-
volutive PNL mixtures, in which the instantaneous mixtures
(matrix �) is replaced by linear filters (matrix of filters ����
[35]. Using a suitable parameterization, Wiener systems can be
viewed as particular PNL mixtures. Consequently, separability
of PNL mixtures ensures blind invertibility of Wiener systems
[36]. Theis et al. have studied in [37] separability of a cascade
of PNL stages, constituting a structure similar to multi-layer
perceptron networks.

G. Other separable nonlinear mixtures

Due to the interesting Darmois’s result for linear mixtures,
it is clear that nonlinear mixtures which can be reduced to
linear mixtures with a simple mapping should be separable.

1) A simple example: As an example, consider multiplica-
tive mixtures:

����� �

��
���

��� ���� � � �� � � � � � (12)

where the ����� are positive independent sources. Taking the
logarithm yields

������� �

��
���

�� �� ������ � � �� � � � � � (13)

which is a linear model for the new independent random
variables �� �����. For instance, this type of mixtures can be
used for modeling the dependency between the temperature
and magnetic field in Hall silicon sensor [38], or gray-level
images as a product of incident light and reflected light [26].
Considering in more detail the former example, the Hall
voltage [39] is equal to

�� �  !" (14)

where � depends on the semiconductor type, since the temper-
ature effect is related to the mobility of the majority carriers.
Then, using two types (N and P) of sensors, we have�

���
��� �  �!���"� ���

���
��� �  �!���"� ���

(15)

For simplifying the equations, we now drop the variable �
out. Because the temperature " is positive but the sign of the
magnetic field ! can vary, taking the logarithm leads then to
the equations�

�� 
 ���

 � ��  � � �� 
 ! 
 ��� ��"

�� 
 ���

 � ��  � � �� 
 ! 
 ��� ��"

(16)

These equations describe a linear mixture of the two sources
�� 
 ! 
 and ��" . They can be easily solved even with a simple
decorrelation approach since ! appears with the same power
in the two equations. It is even simpler to directly compute
the ratio of the above two equations:

# �
���

���

�
 �
 �

"��� (17)

which depends only on the temperature " . For separating the
magnetic field, it is sufficient to estimate the parameter  so
that ���

#� becomes uncorrelated with #. From this, one can
deduce !��� up to a multiplicative constant. Final estimation
of the values of ! and " requires sign reconstruction and
calibration steps.

2) Generalization to a class of mappings: Extension of
the Darmois-Skitovic theorem to nonlinear functions has been
addressed by Kagan et al. in [40]. Their results have recently
been revisited within the framework of BSS of nonlinear
mixtures by Eriksson and Koivunen [26]. The main idea is to
consider particular mappings � satisfying an addition theorem
in the sense of the theory of functional equations. As a simple
example of such a mapping, consider the nonlinear mixture of
the two independent random variables �� and ��:�

�� � ��� � ����� � �����
��

�� � ��� 	 �����	 �����
��

Now, using the variable transforms � � ��������� and � �
���������, the above nonlinear model becomes�

�� � ����� � ��
�� � ����� 	 ��

Applying again the transformation ����� to �� and �� yields�
�� � ��������� � � � �
�� � ��������� � � 	 �

which is now a linear mixture of the two independent variables
� and �. This nice result is due to the the fact that ������$�
is a mapping of ��� � and ��� $.
More generally, this property will hold provided that there
exists a mapping � and an invertible function 
 satisfying an
addition theorem:


��� � ��� � � 	
����� 
����
 (21)

Let  � � be in the range 	�� $
. The basic properties
required for the mapping � (in the case of two variables,
but extension is straightforward) are the following:

� � is continuous at least separately for the two variables;
� � is commutative, i.e. �� �� � ��� ��� �� � ���� �;
� � is associative, i.e. �� �� %� � ��, ����� ��� %� �
������� %��;

� There exists an identity element � � � such that  �
�� ��� �� � ���� � � ;

�  � �, there exists an inverse element �� � � such
that ��� ��� � ����� � � �.



In other words, denoting  Æ � � ��� ��, these conditions
imply that the set ��� Æ� is an Abelian group. Under this
condition, Aczel [41] proved that there exists a monotonic
and continuous function 
 � � � 	�� $
 such that


��� 	� � ��
���� 
�	�� � 
��� Æ 
�	� (22)

Clearly, applying 
�� (which exists since 
 is monotonic) to
the above equation leads to

�� 	 � 
�����
���� 
�	��� � 
���
��� Æ 
�	�� (23)

Using the above property (22), one can define a product &
with integer and extend it to real variables:


�'�� � ' & 
��� (24)

Taking the inverse 
�� and denoting 
��� � , this yields

'
���� � 
���' & � (25)

Then for any constants '�� � � � � '� and random variables
�� � � � � �, the following relation holds:

'�

������� � � '�


����� � 
���'�&�Æ� � �Æ'�&�� (26)

Finally, Kagan et al. [40] stated the following theorem:
Theorem 7.1: Let �� � � � � � be independent random vari-

ables such that�
�� � �� & � Æ � � � Æ �� & �
�� � $� & � Æ � � � Æ $� & �

are independent, and the operators & and Æ satisfy the above
conditions. Denoting by 
 the function defined by the operator
Æ, 
����� is Gaussian if ��$� �� �.

This theorem can be easily extended to source separation,
and with such mixtures the separation algorithm consists of 3
practical steps [26]:

� Apply 
�� to the nonlinear observations for providing
linear mixtures in �� � 
�����.

� Solve the linear mixtures in �� by any BSS method.
� Restore the actual independent sources by applying  � �

����.

Unfortunately, this algorithm is not blind since the function

 must be known. If 
 is not known, a suitable separation
structure is a cascade of identical nonlinear componentwise
blocks (able to approximate 
��) followed by a linear matrix
� able to separate the sources in linear mixtures. This stage is
further followed by identical nonlinear componentwise blocks
(which approximate 
 ) for restoring the actual sources. We
remark that the two first blocks of this structure are identical
to the separation structure of PNL mixtures (in fact slightly
simpler, since all the nonlinear blocks are similar). We can
then estimate the independent distorted sources � � with a PNL
mixture separation algorithm. After computing 
 from the
nonlinear block estimates (which approximate 
 ��), one can
then restore the actual sources.

The PNL mixtures are close to these mappings. They are
in fact more general since the nonlinear functions 
 � can be
different and unknown. Consequently, algorithms developed

for separating sources in PNL mixtures (e.g. [24]) can be used
for blindly separating these nonlinear mappings, avoiding the
above step 1 used in [26]. Other examples of mappings satis-
fying the addition theorem are given in [40], [26]. However,
realistic mixtures belonging to this class seem unusual, except
for the PNL mixtures (11) and the multiplicative mixtures (12).

Taleb and Jutten have considered separability of nonlinear
mixtures in [24], [5]. Their general conclusion is the same
as earlier: Separation is impossible without additional prior
knowledge on the model, since the independence assumption
alone is not strong enough in the general nonlinear case.

H. Prior information on the sources

In this subsection we show that prior information on the
sources can simplify or relax the indeterminacies in nonlinear
mixtures.

1) Bounded sources in PNL mixtures: Let us consider
sources whose pdf has a bounded support, with nonzero
values on the edges of the support. For example the uniform
distribution or the distribution of a random sample of a sine
wave satisfy this condition. For simplicity, we discuss only
PNL mixtures (Figure 1) of two sources, but the results can
be easily extended to more sources. The joint distribution of
the two sources � is then contained in a rectangle. After the
linear mixing ��, the joint distribution of � lies inside a
parallelogram. After the componentwise invertible nonlinear
distortions 
�, the joint distribution of � (the PNL mixtures)
is contained in a ”distorted” parallelogram.

Babaie-Zadeh, Jutten and Nayebi [42] proved that a distri-
bution contained in a parallelogram (DCP) can be transformed
by componentwise invertible mappings into another DCP only
if the mappings are linear. The nonlinearities � � compensating

� can then be estimated so that the borders of the distorted
parallelogram associated with the joint distribution of the PNL
mixtures become straight lines. Details of the algorithm and
experimental results are given in [42]. This method proves that
using simple prior information, the nonlinear distortions can
be estimated without using the independence assumption. In
other words, bounded sources provide useful extra information
for simplifying separation algorithms in PNL.

2) Time correlated sources in nonlinear mixtures: Consider
two independent and identically distributed random signals,
����� and �����. Using the Darmois decomposition procedure
[27], [23], one can construct new signals 	���� and 	���� which
are statistically independent although the underlying mapping
is still a mixing mapping:�

	���� � ���
�������

	���� � ������
������� ������

Here �� denotes the cumulative probability function of the
random variable X. If the sources are temporally correlated,
Hosseini and Jutten proved [43] that the above mapping
does no longer preserve independence. Of course, this partial
theoretical result does not give any proof for the separability
of nonlinear mixtures of temporally correlated sources, but it
shows that even fairly weak prior information on the sources



can reduce the typical indeterminacies of ICA encountered in
nonlinear mixtures.

III. SEPARATION METHODS FOR POST-NONLINEAR

MIXTURES

A. Minimization of mutual information

Consider now BSS methods proposed for the simpler case
of post-nonlinear mixtures (11). Taleb and Jutten have studied
this case in several papers [44], [24], [45], and we start with
a brief discussion of their results. A short overview of their
studies can be found in [5], and the main results have been
represented in [24].

The separation algorithm for the post-nonlinear mixtures
(11) generally consists of two subsequent parts or stages:

1) A nonlinear stage, which should cancel the nonlinear
distortions 
�� � � �� � � � � �. This part consists of
nonlinear functions ������ �.

2) A linear stage that separates the approximately linear
mixtures � obtained after the nonlinear stage. This is
done as usual by learning an ��� separating matrix �
for which the components of the output vector � = ��

of the separating system are statistically independent (or
as independent as possible).

Taleb and Jutten [24] use the mutual information (��� between
the components 	�� � � � � 	� of the output vector as the cost
function and independence criterion in both stages. For the
linear part, minimization of the mutual information leads to
the same estimation equations as for linear mixtures [1], [4]

)(���

)�
� 	E���� � 	 ��� ��� (29)

where components *� of the vector � are score functions of
the components 	� of the output vector �:

*��� �
�

�
�� ���� �

�����

����
(30)

Here ���� is the pdf of 	� and ����� its derivative. In practice,
the natural gradient algorithm [8], [10], [11] is used for
providing equivariant performance, which does not depend on
the mixing matrix � provided that there is no noise present.

For the nonlinear stage, one can derive from the estimating
equations the gradient learning rule [24]

)(���

)��
� 	E

�
) �� 
 ������� ��� 


)��

�

	 E

�
��
���

*��	��$��
)������ ���

)��

	
(31)

Here �� is the  th component of the observation vector,
$�� is the element � of the separating matrix �, and � ��
is the derivative of the  th nonlinear function ��. The ex-
act computation algorithm depends naturally on the specific
parametric form of the nonlinear mapping ������ ���. In [24],
a multilayer perceptron network is used for modeling the
functions ������ ���,  � �� � � � � �.

Contrary to BSS of linear mixtures, separation performance
for nonlinear mixtures is strongly related to the estimation

accuracy of the score functions (30) [24]. The score functions
(30) must be estimated adaptively from the output vector �.
Several alternative ways to do this are considered in [24]. The
first approach is to estimate the pdf, and then compute using
differentiation the score function. Pdf estimation based on the
Gram-Charlier expansion [2], [1] performs appropriately only
for mild post-nonlinear distortions. For hard nonlinearities, a
simple pdf estimation based on kernel methods is preferable.
The second method estimates the score functions directly,
and provides very good results for hard nonlinearities, too.
A well performing batch type method for estimating the score
functions has been introduced in a later paper [45].

B. Other methods for post-nonlinear mixtures

Several other authors have studied methods for blind sep-
aration of post-nonlinear mixtures starting from different
viewpoints. An early method proposed by Lee, Koehler, and
Orglmeister in [46] is based on an extension of the natural
gradient algorithm, and uses either parametric sigmoidal non-
linearities or more flexible higher-order polynomials. Achard,
Pham and Jutten [47] proposed another parameterization of
the mutual information criterion involving the derivatives of
the nonlinearities. As these derivatives are parameterized by
piecewise constant functions, the algorithms are very simple.

Another approach by Ziehe et al. [48] uses first the alternat-
ing conditional expectation (ACE) method of nonparametric
statistics for approximate inversion of the post-nonlinearities

� in (11). After this a BSS method called TDSEP, based
on temporal decorrelation and introduced earlier by the same
authors (see [48]), is used for recovering the source signals.
Independently, Solé et al. [49] and Ziehe et al. [50] improved
the method by directly computing (instead of estimating) the
inverse �� (see Figure 1) of the nonlinear mapping 
 according
to the formula

��� � ��� Æ ���
(32)

Here ���
is the cumulative distribution function of the random

variable +�, and � is the cumulative Gaussian distribution.
Peng, Chi, and Siu [51] have introduced a semi-parametric

hybrid neural network model based on the MLP network [29]
for separating post-nonlinear mixtures. The main advantage
of their method is that it is able to consider cross-channel
post-nonlinearities, too, but experimental results have been
presented on separation of two sources only. A similar gener-
alized post-nonlinear mixture model has been addressed also
in [52] by using adaptive spline neural networks.

In [53], Puntonet et al. have proposed combining a geo-
metric approach with neural network learning for separating
a special class of post-nonlinear mixtures, which are assumed
to be powers of linear mixtures of the source signals. Another
geometrical approach for separating bounded sources in PNL
mixtures has been proposed by Babaie-Zadeh, Jutten and
Nayebi in [42].

C. Extension of PNL mixtures

A Wiener system consists of the cascade of a linear filter
	,���
 followed by a memoryless nonlinearity 
 , whose input



is an independent and identically distributed signal �� �. The
output is then �� � � 
�	,���
�� ��. Using a suitably chosen
parameterization, Taleb, Solé and Jutten proved that Wiener
systems can be expressed as PNL mixtures, and proposed
non parametric [36] as well as parametric [54] algorithms
based on minimization of mutual information rate [55]. A
similar problem appearing in satellite communications has
been solved using Monte Carlo Markov Chain (MCMC)
simulation methods [56].

Convolutive post-nonlinear (CPNL) mixtures have been
introduced by Babaie-Zadeh, Jutten and Nayebi for taking into
account propagation which is commonplace in many realistic
situations. The observation vector is then

��� � � 
��	-���
�� ��� � � �� � � � � � (33)

Some separation algorithms based on the generalization of
mutual information minimization for random processes have
been proposed in [35], [57].

IV. SEPARATION METHODS FOR GENERAL NONLINEAR

MIXTURES

A. Variational Bayesian methods

Advanced Bayesian inference methods are becoming in-
creasingly popular both in neural networks and statistical sig-
nal processing, because one can often obtain excellent results
using them provided that the assumed model is of correct
type. They allow utilization of the available prior information
by modeling them using suitable prior distributions, and a
fully Bayesian treatment makes it possible to select an optimal
model order, making such methods robust against overfitting.
The main disadvantages of fully Bayesian estimation methods
have been their often quite high computational load and
intractable computations without approximations. These obsta-
cles have prevented their application to realistic unsupervised
or blind learning problems where the number of unknown
parameters to be estimated grows easily large.

Variational Bayesian learning, also called Bayesian ensem-
ble learning [58], utilizes an approximation which is fitted to
the posterior distribution of the parameter(s) to be estimated.
The approximative distribution is often chosen to be Gaussian
because of its simplicity and computational efficiency. The
mean of this Gaussian distribution provides a point estimate
for the unknown parameter considered, and its variance gives
a somewhat crude but useful measure of the reliability of
the point estimate. The approximative posterior distribution is
fitted to the posterior distribution estimated from the data using
the Kullback-Leibler information (divergence) [1], [4]. This
measures the difference between two probability densities, and
is sensitive to the mass of the distributions rather than to some
peak value, resulting in robust estimates.

Variational Bayesian methods were first applied to standard
linear ICA and BSS in [59], [60], and several research groups
have since then used Bayesian approaches to handle various
blind problems for linear models; see [16], [1], [18], [61] and
the references therein. Valpola (earlier Lappalainen) and his
co-authors have introduced several methods based on Bayesian

ensemble learning for blind estimation and separation in non-
linear mixture (data) models. In these methods, the nonlinear
mapping  in (2) is modeled using a multilayer perceptron
(MLP) network [29] with one nonlinear hidden layer, and the
data model (2) contains also additive noise. The necessary
regularization for nonlinear BSS is achieved by choosing the
model and sources that have most probably generated the
observed data.

Assuming that the source signals � at the input layer of
the MLP network have simple Gaussian distributions, one ob-
tains a nonlinear principal component analysis (PCA) solution
called nonlinear factor analysis (NFA) [62], [63], [64], [1].
The NFA solution can usually model quite well the nonlinear
mixtures (observed data), but it does not yet provide estimates
of the independent source signals, because the sources have
plain Gaussian distributions in the NFA method. The simplest
way to achieve nonlinear BSS is to apply standard linear
ICA to the found NFA solution. The quality of this nonlinear
BSS solution can be improved still somewhat by continuing
Bayesian ensemble learning, but using now a more sophisticed
a mixture-of-Gaussians model for the sources. It is well
known that suitable mixtures of Gaussian distributions are
able to model with sufficient accuracy any source distributions.
This method is called Nonlinear Independent Factor Analysis
(NIFA).

The NFA and NIFA methods were first introduced in [62],
and a more principled theoretical derivation has been presented
in [63]. Experimental results with artificially generated data,
showing that the NFA method followed by linear ICA and
the NIFA method are able to approximate pretty well the true
sources, have been presented in [1], [62], [64]. These methods
have been applied also to real-world data sets, including 30-
dimensional pulp data [1], [62], [64] and speech data [65],
but interpretation of the results is somewhat difficult, requiring
problem-specific expertise.

Somewhat later on, the NFA method was extended to
include a nonlinear dynamic model for the sources in [66].
The developed NDFA (Nonlinear Dynamic Factor Analysis)
method is presented thoroughly in [61], and the results ob-
tained thus far have been summarized in [65]. The MATLAB
codes for the NFA and NDFA methods are available at the
www site [67].

More specifically, the data model used in the NDFA method
is

���� � ������ � ���� (34)

���� � �����	 ��� ����� (35)

In the latter equation (35), ���� is another unknown nonlinear
function which controls the dynamics of the sources ����, and
���� is a similar additive noise term as ���� in the static
nonlinear data model (34). Similarly as in the NFA method,
the function ���� is modeled by an MLP network, and the
unknown mappings ��� and ���� as well as the sources are
learned using Bayesian ensemble learning. The model (34)–
(35) is discussed in detail in [61].



Many real-world data sets can be appropriately described as
nonlinear dynamic systems such as (34)–(35), and therefore
nonlinear BSS for dynamical systems may in fact have more
practical applications than static nonlinear BSS. The first
paper about nonlinear dynamical ICA (to our knowledge) is
[68], where the authors have considered state-space models
and a hyper radial-basis function (RBF) network [29] for
nonlinear mixtures. However, the method introduced in [68]
is not completely blind, because it partly resorts to supervised
learning.

In experiments with difficult chaotic data [66], [61], the
NDFA method performed excellently, outperforming for ex-
ample the prediction results given by nonlinear autoregressive
modeling learned by standard back-propagation (see [29],
Chapter 15) by an order of magnitude. The NDFA method
has been applied also to BSS of biomedical MEG data in [69],
and it provided clearly better results than standard linear ICA.
In this application, the static data model (34) was a standard
linear ICA model, but the dynamic model (35) was nonlinear.
The NDFA method has been used not only to blind estimation
of the dynamic system and its source signals, but also to
detection of changes in the states (sources) of the process in
[70], [65]. The method performed again much better than the
compared state-of-the-art techniques of change detection.

A problem in particular in the NDFA method but also
in the NFA and NIFA methods is that their computational
load is still high in problems of realistic size in spite of the
efficient Gaussian approximation. Another problem is that the
Bayesian ensemble learning procedure may get stuck to a
local minimum and requires careful initialization. To combat
these problems, a simpler block approach which neglects all
posterior dependencies has been recently developed in [71].
The block approach allows straightforward construction and
Bayesian ensemble learning of a variety of models, and it is
computationally clearly more efficient and robust against local
minima. It can be used for learning variance sources for linear
and nonlinear models [71], [72], and in [73] we have tested
it in nonlinear BSS. The results for artificial data are slightly
worse than when using the NFA method followed by linear
ICA or the NIFA method, but preliminary experiments with
real-world speech data are quite encouraging.

Occasionally, the approximation used in the block method
which neglects all posterior dependencies may be too simple
for providing the true ICA or BSS solution, leading to inferior
performance. This problem and solutions to it are discussed in
[74]. Ensemble learning can be accelerated also by applying an
improved updating scheme for the parameters to be estimated
[75].

B. Other approaches

In this section, we briefly review other methods proposed
for nonlinear ICA or BSS.

Already in 1987, Jutten [76] used soft nonlinear mixtures
for assessing the robustness and performance of the seminal
Hérault-Jutten algorithm. However, Burel [77] was probably
the first to introduce an algorithm specifically for nonlinear

ICA. His method, restricted to known nonlinearities with
unknown parameters and based on back-propagation type
neural learning, suffers from huge computational complexity
and problems with local minima.

A few years after this, Deco and Parra with their co-
authors developed in a series of papers [78], [79], [80], [81],
[82] nonlinear ICA methods based on volume conserving
symplectic transformations. In fact, the constraint of volume
conservation is somewhat arbitrary, and hence these methods
are usually not able to recover the original sources.

One of the earliest ideas for achieving general nonlinear
BSS (or ICA), introduced first by Pajunen in [83] and then
together with co-authors in [84], is to use the well-known
self-organizing map (SOM) (see for example [29]) to that
end. SOM learns in an unsupervised manner a nonlinear
mapping from the data to a usually 2-D rectangular grid.
With suitable modifications [83], [84], the mapping provided
by SOM is roughly uniformly distributed on the grid. The
marginal densities along the sides of the rectangular grid
become then statistically independent. The SOM mapping also
provides a regularization mechanism needed in nonlinear BSS,
because it tries to preserve the structure of the data by using
a nonlinear mapping as simple as possible [29], [1].

The SOM-based nonlinear BSS method has been success-
fully applied to denoising of images corrupted by multi-
plicative noise in a recent journal paper [85]. A comparison
between standard SOM and its modified version which is
more suitable for dealing with multiplicative noise is presented
together with experimental separation results on test and real
images.

In general, the SOM-based nonlinear BSS method is able
to approximately separate the sources if their distributions are
close to the uniform one, but the results become the poorer
the farther away the distributions of the sources are from the
uniform one [1]. Another difficulty in using SOM for nonlinear
BSS or ICA is that computational complexity increases very
rapidly with the number of the sources, limiting the potential
application of this method to small-scale problems [1], [85].
Some further results on the applicability of the SOM-based
method to linear and nonlinear BSS in simple cases have been
given also in [86]. Lin, Grier, and Cowan [87] have indepen-
dently proposed using SOM for nonlinear ICA and BSS in
a different manner by treating ICA as a local computational
geometry problem.

The restriction of uniform distributions can be alleviated
by using instead of SOM so-called generative topographic
mapping (GTM) method, which was introduced in [88] as
a principled and theoretically well founded alternative to the
somewhat heuristic SOM method. A nonlinear BSS method
relying on a slightly modified version of GTM was introduced
in [89], and it is discussed somewhat more thoroughly in
Section 17.4 of the book [1]. The method requires knowledge
of the distributions of the sources which no longer need to be
close to the uniform one, but the problem with the curse of
the dimensionality remains.

In addition to the variational Bayesian approaches of the



previous subsection, MLP networks have been employed in
several other nonlinear BSS or ICA methods as flexible models
for the nonlinear mixing mapping (2). Autoassociative MLP
networks [29] in which the desired output vector of the
network is the same as the input mixture vector ���� have
been tried for this task. Both the generative model (2) and
its inversion (3) are learned simultaneously, but separately
without utilizing the fact that the models are connected.
Autoassociative MLPs have shown some success in nonlinear
data representation [29], but generally they suffer from slow
learning prone to local minima.

Most works on autoassociative MLPs use point estimates
for weights and sources obtained by minimizing the mean-
square representation error for the data. It is then impossible
to reliably choose the structure of the model, and problems
with over- or underfitting can be severe. Hecht-Nielsen [90],
[91] proposed so-called replicator networks for universal op-
timal nonlinear coding of input data. Replicator networks
are autoassociate MLP networks, where the data vectors are
mapped onto a unit hypercube so that the mapped data is
uniformly distributed inside the hypercube. The coordinates of
the mapped data on the axes of the hypercube, called natural
coordinates, form then in fact a nonlinear ICA solution, even
though this has not been noticed in the original papers [90],
[91].

Hochreiter and Schmidhuber [92] have used in context
with MLP networks a method based on minimum description
length, called LOCOCODE. This method does estimate the
distribution of the weights, but it has no model for the sources.
It is then impossible to measure the description length of
the sources. Anyway, the experimental results yielded by the
LOCOCODE method show interesting connections with ICA;
sometimes the method provides a nonlinear ICA solution,
sometimes it does not [92].

Another well-known information theoretic criterion, mutual
information, is applied to measuring statistical independence
in [30], [93]. In these papers, various MLP network based
methods have also been introduced for nonlinear blind sepa-
ration. In particular, Yang, Amari, and Cichocki [93] deal with
extensions of the basic natural gradient method for nonlinear
BSS, and furthermore present another extension based on
entropy maximization and experiments with post-nonlinear
mixtures. This technique has been generalized to mixtures
of sigmoidal nonlinearities, allowing an improved fitting to
complicated nonlinear mixing functions, in [94]. Yet another
paper suggesting a maximum entropy method for nonlinear
ICA using a MLP network structure is [95].

Kernel-based methods, in particular kernel ICA [96] and
kernel PCA which is a nonlinear extension of standard PCA
(see again [29] for a brief description) can also be used as
a starting point for developing algorithms for nonlinear ICA
and BSS. A first paper on this line of research is [97], where
kernel canonical correlation analysis has been suggested for
nonlinear ICA and some other extensions of standard linear
ICA. A more efficient algorithm with a successful example of
blind separation of nonlinearly mixed speech signals has been

introduced in [98]. An open problem with these somewhat
heuristic kernel methods is how to choose the nonlinear
transformation into a higher dimensional space so that the
mixtures become roughly linearly separable there.

Tan and Zurada [99] have proposed a radial basis function
(RBF) neural network structure for approximating the separat-
ing mapping (3). Their contrast function consists of the mutual
information as well as of partial moments of the estimated
separated sources, which are used to provide the regularization
needed in nonlinear BSS. Simulation results are presented for
several artificially generated nonlinear mixture sets, confirming
the validity of the method introduced in [99].

Marques and Almeida [100] have introduced a pattern
repulsion method based on the maximum entropy principle
for solving the nonlinear ICA or BSS problems. Their model,
whose origins lie in statistical physics, is studied theoretically
in [101]. Xiong and Huang [102] propose a generalization of
the classic Bell-Sejnowski algorithm which uses power series
of the nonlinear mixtures to approximate the Taylor expansion
of the separating mapping (3). Genetic algorithms have been
considered for improving the estimation of parameters of the
separating mapping in [103].

A technique inspired by properties of electric fields, appli-
cable for nonlinear ICA and some other extensions of ICA,
has been suggested in [104]. It can be viewed also as a method
for constructing local density approximations to the joint and
factorial distributions, providing a more rigorous theoretical
foundation to this method [105].

Several researchers have considered the possibility of apply-
ing their methods to nonlinear ICA or BSS without presenting
a complete study including experimental results. Xu [106] has
developed a general Bayesian Ying-Yang framework which
could be applied to nonlinear ICA. Hinton et al. [107] have
interpreted ICA in a novel way as an energy-based prob-
ability density model, mentioning that it is easy to extend
the approach to nonlinear ICA models. A related paper is
[108]. Chen and Gopinath propose an iterative Gaussianization
technique in [109] which could according to them provide
a computationally efficient solution to nonlinear ICA. The
idea of applying Gaussianization methods for separating post-
nonlinear mixtures has been introduced independently in [50],
[49], see Section III.B.

C. Local ICA and BSS

Nonlinear independent component analysis or blind source
separation are generally both computationally and conceptu-
ally difficult problems. Therefore, local linear ICA and/or BSS
methods have received some attention recently as a practical
compromise between linear ICA and completely nonlinear
ICA or BSS. These methods are more general than standard
linear ICA in that several different linear ICA models are used
to describe the observed data. The local linear ICA models can
be either overlapping, as in the promising Bayesian mixture-
of-ICA methods introduced in [110], [111], or nonoverlapping,
as in the clustering-based methods proposed in [112], [113].
In [114], [115], variational Bayesian approach has been used



for determining the number of local independent components
in high-dimensional data sets, with a successful application
to a difficult real-world medical data. Feature detection tools
from image analysis have been used for estimating local ICA
coordinate systems in [116]. In [117], Lin presents interesting
theoretical considerations based on local geometric structure
which can be used for BSS of nonlinear mixtures.

V. CONCLUDING REMARKS

In this paper, we have considered ICA and BSS problems
for nonlinear data models. In that case, ICA is characterized by
huge indeterminacies, and extra constraints or regularization
are necessary for actually achieving solutions which coincide
to source separation.

Two main results can be stated. First, solving the nonlin-
ear BSS problem appropriately using only the independence
assumption is possible only if mixtures as well as separa-
tion structure are structurally constrained: for example post-
nonlinear mixtures, or mappings satisfying addition theorem
(II-G.2). Second, prior information on sources, for example
bounded or temporally correlated sources, can simplify the
algorithms or reduce the indeterminacies in the solutions.

Another promising method consists in regularizing the so-
lution using a fully Bayesian variational ensemble learning
approach. It tries to find the sources and the mapping that
have most probably generated the observed data. The ensem-
ble learning method allows nonlinear source separation for
problems of realistic size, and it can be easily extended in
various directions.

A lot of work remains to be done in studying the nonlinear
ICA and BSS problems. First, further studies are needed on
the separability problem. Second, these nonlinear problems
are difficult and ill-posed without a suitable regularization,
and we feel that all the available information should be used
whenever possible. For example, incorporation of temporal
statistics can be quite helpful. Moreover, a better modeling
of the relationship between the independent components or
sources and the observations is essential for choosing a
suitable separation structure and subsequently for studying
separability. Finally, up to now, the research has addressed
mainly theoretical problems. The results will become more
widely interesting only if they can be validated on realistic
problems using real-world data.
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[6] C. Jutten and J. Hérault, “Blind separation of sources, Part I: an
adaptive algorithm based on a neuromimetic architecture,” Signal
Processing, vol. 24, no. 1, pp. 1–10, 1991.

[7] J.-F. Cardoso and A. Souloumiac, “Blind beamforming for non gaussian
signals,” IEE Proceedings-F, vol. 140, no. 6, pp. 362–370, 1993.

[8] A. Cichocki, R. Unbehauen, and E. Rummert, “Robust learning al-
gorithm for blind separation of signals,” Electronics Letters, vol. 30,
no. 17, pp. 1386–1387, 1994.

[9] A. Bell and T. Sejnowski, “An information-maximization approach to
blind separation and blind deconvolution,” Neural Computation, vol. 7,
no. 6, 1995.

[10] J.-F. Cardoso and B. Laheld, “Equivariant adaptive source separation,”
IEEE Trans. on Signal Processing, vol. 44, no. 12, pp. 3017–3030,
1996.

[11] S. Amari, A. Cichocki, and H. Yang, “A new learning algorithm for
blind signal separation,” in Advances in Neural Information Processing
Systems, Denver (Colorado), December 1996, pp. 757–763.

[12] A. Hyvärinen and E. Oja, “A fast fixed-point algorithm for independent
component analysis,” Neural Computation, vol. 9, no. 7, pp. 1483–
1492, 1997.

[13] J.-F. Cardoso, C. Jutten, and P. Loubaton, Eds., Proc. of the First Int.
Workshop on Independent Component Analysis and Signal Separation,
Aussois, France, January 1999.

[14] P. Pajunen and J. Karhunen, Eds., Proc. of the 2nd Int. Workshop
on Independent Component Analysis and Blind Signal Separation,
Helsinki, Finland, June 2000.

[15] T.-W. Lee, S. Makeig, and T. Sejnowski, Eds., Proc. of the 3rd Int.
Conf. on Independent Component Analysis and Signal Separation, San
Diego, CA, USA, December 2001.

[16] M. Girolami, Ed., Advances in Independent Component Analysis.
Springer-Verlag, 2000.

[17] S. Haykin, Ed., Unsupervised Adaptive Filtering, Vol. I: Blind Source
Separation. Wiley, 2000.

[18] S. Roberts and R. Everson, Eds., Independent Component Analysis:
Principles and Practice. Cambridge Univ. Press, 2001.

[19] L. Tong, V. Soon, Y. Huang, and R. Liu, “AMUSE: a new blind
identification algorithm,” in Proc. of IEEE Int. Symp. on Circuits and
Systems (ISCAS’90), New Orleans, LA, USA, 1990.

[20] A. Belouchrani, K. A. Meraim, J.-F. Cardoso, and E. Moulines, “A
blind source separation technique based on second order statistics,”
IEEE Trans. on Signal Processing, vol. 45, no. 2, pp. 434–444, 1997.

[21] K. Matsuoka, M. Ohya, and M. Kawamoto, “A neural net for blind
separation of nonstationary signals,” Neural Networks, vol. 8, no. 3,
pp. 411–419, 1995.

[22] D. T. Pham and J.-F. Cardoso, “Blind separation of instantaneous
mixtures of nonstationary sources,” IEEE Trans. on Signal Processing,
vol. 49, no. 9, pp. 1837–1848, 2001.

[23] A. Hyvärinen and P. Pajunen, “Nonlinear independent component
analysis: Existence and uniqueness results,” Neural Networks, vol. 12,
no. 3, pp. 429–439, 1999.

[24] A. Taleb and C. Jutten, “Source separation in post-nonlinear mixtures,”
IEEE Trans. on Signal Processing, vol. 47, no. 10, pp. 2807–2820,
1999.

[25] A. Taleb, “A generic framework for blind source separation in struc-
tured nonlinear models,” IEEE Trans. on Signal Processing, vol. 50,
no. 8, pp. 1819–1830, 2002.

[26] J. Eriksson and V. Koivunen, “Blind identifiability of class of nonlinear
instantaneous ICA models,” in Proc. of the XI European Signal Proc.
Conf. (EUSIPCO 2002), vol. 2, Toulouse, France, September 2002, pp.
7–10.

[27] G. Darmois, “Analyse des liaisons de probabilité,” in Proc. of Int.
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